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sides of the  origin is not in  general  the same. No 
explanat ion  is offered for this  lack of cent ro-symmetry  
in  the  diffract ion pat tern.  I t  p resumably  belongs to 
the  same class of phenomena  as tha t  which often 
leads to a gross lack of such s y m m e t r y  in in tens i ty  in 
electron-diffraction pat terns,  and even, as in the 
present instance, of complete suppression of a layer  
line at  one side of the origin. 

Since the  observation of the fine structure in the 
present work, a review of earlier electron-diffraction 
photographs has revealed traces of the same phenom- 
enon on some of them, but  to a much less marked  
degree. In  some cases i t  m a y  be deduced from the 
heights of the spots perpendicular  to the layer  lines 
tha t  the resolution was not sufficient to resolve such 
a fine structure,  but  this  is cer tainly not always true, 
and it  seems probable tha t  the fine s tructure does not 
usual ly  appear  even when the resolution is high 
enough. 

If  the structure were spiral  this would be explained 
if the  edges of the spiral  layers were not  paral lel  to 
the f ibri l  axis, and  if the structure were of the distorted 

circular type  if the distortions were twisted along 
the length of the fibril.  

One possible special case of the fine structure is 
worth noting. A reflection of configuration B from a 
f ibri l  with a very  small  central hole would consist of 
a single sharp spot, f lanked by two very  weak spots 
which might  ei ther  be missed or mis taken  for sub- 
s idiary Laue maxima.  In  ei ther  case, if the sharpness 
of the central  spot were taken to be due to the wall  
thickness of the f ibr i l  this  parameter  would be over- 
es t imated  by a factor of about  two. 

Thanks  are due to the Directors of Ferodo Ltd.,  
for permission to publ ish  this paper. 
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The diffraction pattern of a face-centered cubic crystal containing an arbitrary density of extrinsic 
faults is derived. The derivation is subject to the restriction that the crystal be infinite with infinitely 
extended faults distributed at random on one set of parallel close-packed planes. 

Although both extrinsic and intrinsic stacking faults shift and broaden the same Bragg reflections, 
there are marked differences in behavior which make them readily distinguishable. The peak shift 
produced by a low density of extrinsic faults is in a direction opposite to the shift produced by 
intrinsic faulting. At higher extrinsic fault densities the shifted reflections show two peaks: a new 
peak arises near the hexagonal position, moving to the twin position as the density of faulting 
approaches unity. The broadening is asymmetric at all fault densities. 

Introduction 
A face-centered cubic crystal,  considered as a layer  
structure produced by  the appropriate  s tacking of 
close-packed (111) planes, can contain three essent ia l ly  
different  types  of s tacking error (Read, 1953): A B C A 

C A B B 
(1) In t r ins ic  fault ,  corresponding to the removal  of B C A C 

a close-packed plane from the perfect crystal .  A B B A 
(2) Ext r ins ic  fault ,  corresponding to the insert ion C C C C 

B B B B of an extra  close-packed plane into the  perfect A A A A 
crystal .  

(3) Twin (growth) fault ,  located at  the interface (a) (b) (c) (d) 
between two perfect crystal l i tes which are in 
twin  relation. 

The stacking pat terns  of these faults  are shown in 
Fig. 1 in the usual  A, B, C notation. 

Although the presence of intr insic  s tacking faul ts  

A 
B 

C 
A 

B 
C 

A 

(e) 

Fig. 1. Stacking sequences for: (a) Perfect crystal; (b) Intrinsic 
fau]t; (c) extrinsic fault; (d) twin fault; and (e) twin crystal. 
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in deformed face-centered cubic crystals has been 
verified both by X-ray diffraction (Warren & Ware- 
kois, 1955) and transmission electron microscopy 
methods (Howie, 1960), there is so far no direct 
evidence for the occurrence of extrinsic faulting in 
face-centered cubic crystals; however, it is possible 
to interpret the observed asymmetry of the shifted 
peaks in deformed a-brass (Wagner, 1957) as being 
due to a mixture of intrinsic and extrinsic faults, 
with intrinsic faults predominating (B. E. Warren, 
private communication). I t  is therefore worth while 
to set down some of the possible means of generating 
extrinsic faults: 

(1) Condensation of a sheet of interstitials, without 
offset (Read, 1953). 

(2) Combination of a Shockley partial dislocation 
with a total dislocation on a different slip plane, 
and subsequent dissociation into a positive 
Frank partial and a new Shockley partial 
connected by a ribbon of extrinsic stacking fault 
(Read, 1953). 

(3) Some of the rare earths (e.g., cerium) transform 
at low temperatures from face-centered cubic 
to a hexagonal lattice with ABAC stacking. 
Reference to Fig. l(c) shows that  an extrinsic 
fault produces, locally, this ABAC stacking. 
If such a material were deformed in the face- 
centered cubic state at a temperature somewhat 
above the transformation temperature it is 
possible that  the stacking faults associated with 
extended dislocations would be predominantly 
extrinsic (H. M. Otte, private communication). 

The diffraction effects produced by intrinsic faults, 
growth faults or a mixture of the two have been 
studied by several authors (Paterson, 1952; Gevers, 
1954; Warren & Warekois, 1955). An extensive 
discussion has been given by Warren (1959). In the 
present work the diffraction pattern of a face-centered 
cubic crystal containing extrinsic faults is derived, 
subject to the following assumptions: 

(1) Only extrinsic faults are present. 
(2) Faults occur independently on only one set of 

parallel close-packed planes. 
(3) The crystal is infinite in size (particle-size 

broadening neglected), and the faults cover 
entire (111) planes. 

F o r m u l a t i o n  of the  d i f frac t ion  p r o b l e m  

In the following, the diffraction problem for faulted 
face-centered cubic crystals is formulated along the 
lines followed by Warren & Warekois (1955) in their 
study of intrinsic faulting. A slightly more general 
approach is required to allow for the more com- 
plicated structure of extrinsic faults. 

The layer structure of face-centered cubic crystals 
may be described by noting that, for the perfect 
lattice, successive close-packed planes are offset 

A 

: A2 

-At 

Fig. 2. Perspective view of the hexagonal lattice representation 
of the layer structure of a face-centered cubic crystal. 

laterally by a constant vector. For the stacking of 
(111) planes there are only two different offset vectors 
leading to close-packed structures (Read, 1953)" 
_+f--_(a0/6)[121]. Faults can be described by 
sequences of offset vectors: 

(i) Intrinsic stacking fault: . .. + + + - + + + . . . .  
(ii) Extrinsic stacking fault" . . .  + + + - - + + . . . .  

(iii) Twin fault: . . .  + + + + - - -  . . . .  (1) 

I t  is convenient (Paterson, 1953) to discuss the 
diffraction pattern in terms of a hexagonal lattice 
which, with reference to the cubic unit cell of side a0, 
has axes A1, A2, A3 and reciprocal lattice vectors 
B1, B2, B3 (see Fig. 2): 

A1 = (a0/2) Ill0] Bl=(2/3ao)[211] 
A2 = (a0/2) [011] B2 = (2/3a0) [1Y2] 
A3=a0[ l l l ]  B3= (1/3a0)[lll] .  (2) 

A1 and A2 lie in (111) while A8 is normal to ( l l l ) .  
This choice for the unit cell reflects the fact that  the 
face-centered cubic lattice repeats at every third (111) 
plane (+_3f is a lattice translation vector). The 
relation between the indices (HKL) in the hexagonal 
lattice and the indices (hkl) in the cubic lattice is 
(Warren & Warekois, 1955) 

H = ½ [ - h + k ]  

K = ½ [ - k + l ]  

L = [ h + k + / ]  (3) 

In terms of the hexagonal lattice, the atoms of a 
(possibly faulted) face-centered cubic crystal lie at 
positions 

rm = mlA1 + m2Ae + ½-m~As + 8(m3) (4) 

mz, m2, m3=0, +1, +_2, . . .  

where r~  is the position of the ml, me atom in the 
m~ layer. If the crystal is perfect then either 
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Table 1. Phase changes for faulted face-centered cubic crystals 
(Units of ~0 = (2~/3)) 

(H--K)=2 mod 3 (H- -K)= l  mod 3 

Normal crystal . . .  + + + + + + + . . . . . . . . .  
Intrinsic fault . .. + ÷ + -- + + + . . . . . .  -- -- -- + -- -- -- •. • 
Extrinsic fault . . . + + + - - - - + +  . . . . . .  - - - - - + + - - - - . . .  
Twin fault . . .  + + + + -- -- --. . . . . .  -- -- -- -- + + + • • • 
Twin crystal . . . . . . . . .  + + + + + + + • .. 

(H--K)=Omod 3 

. . .0000000.. .  

. . .0000000.. .  

. . .0000000.. .  

. . .0000000...  

. . .0000000...  

~(ms) ----m3f (5) 
o r  

~(ms) ---- - m 3 f  (6) 

for all  m3. (The two choices correspond to 'normal '  
and  ' twin '  crystals).  The presence of faults  d is t r ibuted 
a t  r andom changes equations (5), (6) into 

~(ma)-- q(ms)f (7) 

where q(m3) is a stochastic variable* tak ing  on positive 
and  negat ive integral  values. 

Hav ing  specified the  na ture  of the  atomic displace- 
ments  in t roduced by  faul t ing on (111), we can now 
proceed to an  expression for the  diffracted in tensi ty  
which explici t ly contains the  effects produced by  
fault ing.  

I f  a beam of X- rays  of wavelength  A directed 
along So t raverses  an  infinite crystal  containing 
a toms a t  positions r ~ ,  then  (Warren,  1959) 

I ( s - s 0 )  = C Z ~ e x p  ((2ui /2)(s-so) . (rm-r,)}  (8) 
m n 

is the  in tens i ty  diffracted into the  direction s;  here 
C depends upon the  scat ter ing power of the  atoms.  
On defining components hi, h~, ha in reciprocal space 
th rough  

(1/;t) ( s -  So)=hlBl+h~B~+hsB3, (9) 

noting that Ai. By=&j and ~(ms). Bs=0, equation (8) 
becomes 

I(hl, h2, ha) = C ~ ~, exp { 2 z i [ ( m l -  nl)hl + (m~.- n2)h2 
m n 

+ ½(ma - na)h~]}, exp {2~i [h~B1 + h2B2]. [8(m~) - 5(na)}. 

(10)  

The summat ions  over m~, n~, me, n~ can be carried 
out immediate ly ,  yielding 

co 

I(h~, h~, h3) --  CO(h~-H)O(h~-K) Z Z 
rn3 ~ - - o o  n 3  = - - o o  

× exp {(27dh~/3)(ma- na)} 

x e x p  {2zd[HB~+KB~].[~(mz)-~(na)]}, (11) 

where H,  K are integers and  5(X) is the Dirac del ta  
function. The diffracted in tensi ty  vanishes except 
when hz=H and  h~ = K,  independent  of the  presence 
of faults.  Bearing this in mind, the  diffracted intensi ty  
can be wr i t ten  (in a rb i t r a ry  units) as 

* Note that relationships may exist among q(ma) and 
q(m a + k),/c---- 0, _+ 1, _+ 2 . . . . .  due to the structure of the faults. 

o o  oo  

I(hs) = 2 ~ exp ((2~ih3/3)(m-n)} 
m = - - - . ( ~  ~ z = - - o o  

x e x p  {2:gi[HBl+KB2].[8(m)-8(n)]}. (12) 

The a rgument  of the  second exponent ia l  in equat ion 
(12) is the  phase difference ~bmn between X- rays  
sca t tered  th rough  H B I + K B 2  by  the  m and by  the  
n layers.  Since, in the  presence of faul t ing,  8(m) is 
a stochastic variable,  q~mn is a stochastic var iable  as 
well: in equat ion (12), exp {iCm~} mus t  be replaced 
by  its expectat ion value over the  dis tr ibut ion of e r a , .  
Thus 

/ ( k s ) =  Z Z exp((2zdh3/3)(m-n)}<exp{iqS,,,,}). 
m = - - c o  n = - - e o  ( 1 3 )  

Equa t ion  (13), together  wi th  informat ion about  the  
phase shifts q)m~ introduced by  faults ,  contains all 
the  diffraction effects which are produced by  faul t ing 
in the  present  model.  

For  a given reflection H,  K the  value of ~bm~ is 
readi ly  found. I f  a 'normal '  crysta l  is defined by  the  
(constant) s tacking offset vector  + f ,  then  for a 
perfect  crys ta l  

~)mn= +(m--n)(2z~/3) for ( H - K ) = 2  rood 3 
¢mn=-(m-n)(2zc/3) for ( H - K ) = I  rood 3 
C m n =  + ( m - - n ) 2 ~  for ( H - - K ) = 0  rood 3 .  (14) 

Defining, for convenience, q0=  (2~/3), the  sequence 
of phase changes across successive planes can be 
t abu la t ed  for faul ted  as well as perfect  crystals ;  
with 

qbmn = ~ qDk , 
k = m +  i 

the  ~ ,  are given in Table 1, f rom which it  is clear 
t h a t  reflections H - K = O  rood 3 are not  affected by  
faults.  

The expectat ion value <exp {iCmn}} can be found 
by  considering an appropr ia te  r andom walk in the  
individual  phase changes ~ . *  

Since the  calculation for intrinsic faul t ing is paral le l  
to t ha t  for extrinsic faul t ing while being considerably 
less complicated, and since i t  is desirable to reproduce 
the results for intrinsic faul t ing for purposes of com- 
parison, the  intrinsic faul t ing case will be t r ea ted  
briefly before proceeding to a consideration of ex- 
tr insic fault ing.  

* For intrinsic faults it is scarcely necessary to use the 
random walk machinery: the expectation value can be 
written down immediately. 
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Diffraction by a crystal  containing 
intrinsic faults 

Let the crystal contain intrinsic faults with stacking 
fault probability o¢. We treat the case (H-K)=2 
rood 3. (The case ( H - K )  = 1 rood 3 is found by chang- 
ing 90 to -2~r/3, while for ( H - K ) = 0  rood 3 the 
diffracted intensi typattern is not affected by faulting). 

Defining 2V=m-n and ~=27rhs/3, equation (13) 
can be written 

I(~,o~)= 2: .Z [exp[iN~]](expi¢~v)]  (15) 

where 
~)0 ---~ O ,  

¢~v = 9~ + 9~ + • • • + 9N, IV" > 0 ,  
and 9¢-~) = -- 9~ • (16) 

The individual phase shifts 9 '  between successive 
(111) planes take the values +9o and - 9 o  with 
probabilities (1-c~) and c¢, respectively. 

The probability of finding a given phase difference 
(ib~=q(2V)9o is therefore the same as the probability 
p(q, IV) of finding a displacement q(2V) after a (one- 
dimensional) random walk of A r steps of unit length 
in which negative steps occur with probability a. 

: N o w  

2V! 
P(q=hr-2k' IV) -- k! (N-k)!  ~ ( 1 -  ~)~'-~ 

so that  
~Vt 

P ( N -  2k, N) = c~(1 - c~) ~'-~ (17) 

is the probability of finding a phase difference 
¢N = (N-- 2k)90. Therefore, since 

N 
(exp i~52v} = 2." P(N-2k,  N) 

k=0 

x exp i (N-  2k)9o, (1V > 0), 

(exp i ~  = 27 k! (iV- k) 
k=0 

x (c~ exp - i 90 )~ [ (1 -  a) exp i9o] ~-~, (N > 0) , 

which can be summed using the binomial theorem: 

(exp iqO2v)=[~¢ exp [ - - i9o]T(1- -~)exp  [i90]] v, 
(2v >_ 0) .  ( is)  

:From equations (16) it is clear that, for 2V<0, the 
roles of + 9o and - 9 o  are simply interchanged: 

<exp i~b~>=[a exp [i9o]+ (1- -a )exp  [ - i9o]]  1~', 
~ < 0 .  (19) 

On substituting equations (18) and (19) into equation 
(15) 

o o  o o  

I ( ~ , ~ ) =  27 [ l+ (27exp[ i2V~] [c~exp[ - ig0 ]  
m = - - o o  zV=I 

+(1--c¢)exp [i9o]] 'v+c.c.)] .  (20) 

Since all lattice planes are statistically equivalent, 
the summation over m is trivial, yielding only a 
(suppressed) normalization factor. On defining 

z=[a exp [ i ( ~ -  9o)]+ ( 1 -  a) exp [i(~ + 9o)]] , 

equation (20) can be written 

co Z Z ¢ 

2:  + l- 
2V=l 

valid for ]zl < 1. The condition ]z I < 1 is satisfied for 
0 < a < l ,  904=0, so that  

I (8 ,  = 

1 + 1-- (1-- ~)exp[ i (~+ 9o) ] -  c~exp[i(~-- 90)] 

0 < c ~ < l .  (21) 

Upon carrying out the indicated algebra and setting 
90=(+2~r/3) (corresponding to H - K = 2  rood 3), 

I(~, a) = 3a (1 - c~) [ ( 2 -  3c~ + 3 a  2) + cos 
+]/(3)(1-2o¢)sin~] -1, ( H - K ) = 2  rood 3,  (22) 

which is identical with the result given by Paterson 
(1952). Equation (22) represents a peak with maximum 
at 

~max-- tan -1 ~/(3) ( 1 - 2 a )  , 

symmetric about ~ma~. :Further symmetry properties 
of 1(~, a) are readily seen from equation (21): 

l(~, a )=I ( -~ ,  l-~x) 

and the relation between reflections ( H - K )  = 2 mod 3 
and (H-K)= 1 mod 3 

( H -  K) = 2 rood 3 ( H -  K) = 1 rood 3 
Ie(~,a)=Ii ( -~ ,a)  

. 

:For purposes of comparison with the results of the 

90 ° 

3 N + 1  

I 

120 ° 

>,,. 

.E 

E3 

h3  3 N + 2  
I 

e-. 
s.- 

f '= 0"9 f = 0"1 
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F ig .  3. D i f f r a c t e d  i n t e n s i t y  a s  a f u n c t i o n  of h a (see t e x t )  
fo r  v a r i o u s  d e g r e e s  of  i n t r i n s i c  f a u l t i n g .  
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extrinsic fault calculation it  is convenient to specify 
the degree of faulting by f, the fraction of (111) 
planes faulted. For intrinsic faulting f is identical 
with the stacking fault probability a. 

The intensity I(~, c~) - I (~ , f )  is plotted against 
or h3 (recall ~=23h3/3) for f=0 .1 ,  0.5, 0.9 in Fig. 3. 
The displacement of the intensi ty maximum, $~.~, 
with increasing f is shown in Fig. 5, where it is con- 
t rasted with the behavior of the diffraction maxima 
shown by a crystal containing extrinsic faults. 

Diffract ion by  a c rys ta l  c o n t a i n i n g  
ext r ins ic  faul ts  

As in the case of intrinsic faulting, the expectation 
value <exp iqS~> can be found by considering a 
random walk process. Reference to Table 1 shows 
tha t  the phase differences between successive (111) 
layers are no longer independent: negative phase 
differences, produced by faulting, must occur in pairs. 
Therefore, the appropriate random walk to consider 
is one in which the possible steps are + 1 (occurring 
with probabili ty 1 -  fl) and - 2  (probability fl). Let 
the probabili ty of finding a displacement q(L) after 
L steps be p(q, L): 

L! 
p(q=L-ak,  L)=k!(L_k)! f lk (1- f l )  r~-k . (23) 

I t  is now necessary to relate the possible sequences 
n - ~  m of (111) lattice planes to this random walk. 

Consider a large crystal made up of M close-packed 
planes and containing r extrinsic faults. The number 
of random steps made in traversing the crystal is M -  r, 
of which r steps have the value - 2. Thus fl = r / (M- r). 

In considering all the possible lattice plane sequences 
n ~ m in such a crystal, account must be taken of the 
fact that  r of the lattice planes (those 'halfway 
through' an extrinsic fault) cannot be represented 
directly as either the beginning or the end of a random 
walk: lattice plane sequences n -+  m beginning or 
ending with these extraordinary planes must be 
t reated separately. 

Suppose we have a lattice plane sequence n -+  m 
in which both n and m are ordinary planes. The 
corresponding random walk is readily found: a random 
walk of L steps, of which k are negative, corresponds 
to m - n  = L + k lattice planes and to a phase difference 
~Pm~=(L-3k)~0 ~cross them. Letting 1V=m-u be 
the separation of the nth and mth planes, the prob- 
abili ty of finding a phase difference ¢ N =  (N-4k)T0 
across them is therefore found by replacing L by N -  k 
in equation (23): 

(N-k)~  
P(N-4k ,  N) = k ! (N_ 2k) ! fi~(1- fl) :v-'~', 0_<k_< [½N] 

where the requirements tha t  the nth (beginning) 
plane be ordinary and tha t  there be a total  phase 
difference of (m-n-4k)To ensure tha t  the mth plane 
will also be ordinary. The probability that  an arbi trary 

sequence n--> m begins and ends with ordinary 
planes and gives a phase difference (N-4k)To  is 
therefore obtained by multiplying the above prob- 
ability by (1 + fl)-l, the probability tha t  the beginning 
plane be ordinary" 

P00[(N_ 4k)T0, AT] = (1_+ fl ) (N--k) ,  k ! (N - 2k) ! ilk(1 -- fl)~'-2~, 

O_<k_< [½N]. (24) 

The remaining three cases, in which either or both 
of the planes n, m are extraordinary, can be treated 
by simply adding an extraordinary plane (occurring 
with probabili ty fl) to either or both ends of an 
ordinary-ordinary sequence, and changing the value 
of the phase difference accordingly. Thus: 

Poe[(N- 2 - 4k)To , N] 
=Poo[(N-1-4k)To, N-1] . f l ,  0_< k_< [ ( N -  1)/2] 

Pe0 [(N-- 2 -- 4k) T0, N] 
=fl.Poo[(N-1-4k)To, N-1] ,  O<_k<_[(N-1)/2] 
Pee[(N-4-4k)To, N] 
=fl.Poo[(N-2-ak)To, N-2] . f l ,  0 < k <  [ ( N - 2 ) / 2 ] .  

(25) 
:Noting tha t  equations (24), (25) incorporate the 

relative frequencies of occurrence of the four possible 
types of sequence m-+ n, the expectation value can 
be writ ten 

<exp i(~> -- <exp iqS~v>=X{Poo(qSN) 
+Poe(¢g)+Peo(¢:v)+Pee(q)~)} exp iqt,¢ (26) 

where the sum is to be taken over all allowed values 
of (/)~. Equation (26) has been derived for N >_ 0; 
as in the case of intrinsic faulting, the expectation 
value for N < 0 is found by replacing + To by -T0 ,  
which is equivalent to the operation of complex 
conjugation" 

<exp i~bN>_v<0 = [<exp i¢~v>:v>o] t . (27) 

The summation of equation (26) can be carried out 
in closed form since (Higher Transce~utental Functions, 
1953) 

E=~I/2] ( _ 1 )k ( M  - k) t 
2 " (2x) u-2k = UM (X),  (28) 
k=0 k ! ( M - 2 k ) !  

where UM(X) is the Tchebichef polynomial of the 
second kind of degree M. On defining 

X = i ( 1  - fl) exp [2iTo]/(2Vfl) (29) 

each of the terms of equation (26) can be put  in the 
form of equation (28), so tha t  (26) becomes 

1 
<exp i¢~> = ~ {(-il/~ exp [-iTo])~"U~(X) 

+ 2fl exp [--/T0] ( - i ]/fl exp [ - iT0]) -~'-1U~-_I(X) 
+ fi2 exp [-2iTo](-iVfl exp [-iTo])~v-2U~._2(X)}, 

~T > 0 ,  (30) 
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where only terms in UK(X) for which K _>_ 0 are 
included.* 

Recalling equation (13), and again defining ~ = 
2~h~/3, the diffracted intensity can be written 

(X) c o  

1(2, fl) = ~ ~ exp [iN$]<exp iqbN) 

= A .~, exp [iN~](exp iq~v). (31) 

Since (exp i q ~ )  has been calculated for the average 
origin plane n, the constant A bears no information 
and is therefore dropped. Recalling equation (27), 
defining 

Z= - i~f l  exp [ i ( ~ -  ~o)] (32) 

and substituting for <exp i q~ ) ,  (N > 0), from equa- 
tion (30) 

1 {~,=~ [ZNU~v(X)+2fl I(~, f l )=  <exp i~0> + 1 - - ~  

o Z~v-~U fi2 × exp [i (~-- q~ )] ~¢_~ (X) + 

xexp [2i(~-c~o)]Z~v-~U.v_2(X)]+ v.~= [c.c. ] , (33) 

where, again, only the terms in Un(X) for which 
K > 0 are to be included. 

The summations of equation (33) can now be 
carried out with the help of the generating function 
for U~v(X) (Higher Transcendental Functions, 1953)" 

o O  

1/(1-2XZ+Ze) = .~ UN(X)Z N, IZ2-2XZI<I. (34) 
N=0 

The condition [Z2-2XZ[<I is met provided that  
0 < f l < l  and Fo#0. Noting that  <exp i ¢ 0 ) = 1  and 
employing equation (34), equation (30) becomes 

The diffracted intensity I_(~, fl), corresponding to 
H - K =  1 mod 3, is obtained by replacing ~ by ( -  ~) 
in equation (37); when H - K = O  mod 3 the diffracted 
intensity is, as noted before, unaffected by faulting. 
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Fig. 4. Dif f rac ted  in t ens i ty  as a func t ion  of h a (see text )  
for var ious  degrees of extr insic  faul t ing.  

Equations (22) and (37) give the diffracted intensity 
for face-centered cubic crystals containing intrinsic 
and extrinsic faults, respectively. While some analytic 
results for low extrinsic fault density are given in the 
next section, the properties of equation (37) for 
general values of fl are, unfortunately, not easily 
specified analytically; the information is most readily 
presented by means of diffracted intensity profiles, 
as in Fig. 4, and by a plot of the positions of the 
maxima in the diffracted intensity profiles versus f, 

I(~, fl) = 1 + ~1 {2XZ-Z2+2fl exp [i(~-cfo)]+l_2XZ+Z2 fi2 exp [2 i (~ -  ~°)] + c.c.} 

or, on replacing X and Z by their values, 

1 {(1--fl) exp[i(~+q~o)]+fl(l+fl)exp[2i(~--q~o)]+2flexp[i(~--~o)] 
I(~,  fl) = 1 + 1 - ~  1 -  (1 - f l ) exp  [ i (~+ ~o)]--fl exp [2i(~-- ~0)] 

O < f l < l ,  q~o#O • 

Upon carrying out the indicated algebra, equation (35) becomes 

fl(1-fl)  { 2 -  cos (~e+ ~o) +2  cos ( ~ -  ~o)-  2 cos 2~o-  cos ( ~ -  3~o) / 
I ( ~ , f l ) -  ( l+f l )  (1 - - f l+f l2 ) - (1 - - f l ) cos (~+~o) - f l cos2(~- -~0)+f l (1 - - f l ) cos (~- -3T0)~  

0 < f l < l ,  ~ 0 # 0 .  

Specializing to the case T0 = +2~/3 (corresponding to ( H - K ) = 2  rood 3), 

3fl(1--fl){ 2 - c o s  ~+ V3 sin ~ } 
I+(~, fl)-- ( l+f l )  2(1-fl+fl2)+(l+fl--2fl2)cos ~+l/(a)(1-fl)sin ~+flcos2~+l/(S)flsin2 ~ 

0 < fl < 1, ( H -  K) = 2 mod 3, ~ = 2~h3/3. 

-4- C.C.} 

(35) 

(36) 

(37) 

* The  recur rence  re la t ion 

UN-I(X) = 2X UMX) - U N+I(X) 
can be used to show, by finite induction, that the probabilities 
of equation (26) sum to 1 for all N. 

the fraction of (111) planes faulted, as in Fig. 5. (For 
intrinsic faulting f, the fraction of planes faulted is 
just a, while for extrinsic faulting it is 2fl/(l+fl).) 

From Figs. 4 and 5, the characteristics of I(~,  fl) 
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Fig. 5. P e a k  positions in reciprocal space as a funct ion  of 
degree of faul t ing for intrinsic and  extrinsic faults.  

for extrinsic faulting are (as f, the degree of faulting, 
increases from 0): 

(1) A shift in the peak position directed away from 
the 'twin' reflection position and accompanied by 
an asymmetric broadening, the shift increasing 
monotonically as the degree of faulting increases. 

(2) The appearance, when roughly 40% of the lattice 
planes are faulted, of a new peak, also asymmetric, 
near the hexagonal close-packed lattice reflection 
position. 

(3) The simultaneous growth and shift toward the 

H-t (  H-K 

2mod3 0mod3 lmod3 2 rood30mod3 lmod3 

2mod3~ 

• h3 l m o d 3 -  ~,- 

0reed3-- ' - 

(a) Normal Crystal (b) Twin Crystal 

2 - - p  

1 -  ql l  

0 '  ' - 
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P 1 

(d) Intrinsic; f~0"5 

ha 

O- -  • 

0 -  

(e) Extrinsic; f~0"2 

_F l 
q 

(f) Extrinsic; f~O'S 

Fig. 6. Reciprocal  space in tens i ty  maps  for faul ted  crystals.  

twin position of this new peak, coupled with a 
continued shrinkage of the original peak, until, 
as fl-~ 1, a sharp peak is formed at the twin 
position. 

(4) The gross effect is tha t  for intermediate degrees 
of faulting, the diffraction pattern is streaked 
along the ha direction, with the streaking extend- 
ing further toward the twin position (decreasing 
hs) than along increasing ha. 

The changes in diffracted intensity produced by 
intrinsic and extrinsic faults are contrasted in Fig. 6, 
where, following Paterson (1952), schematic maps of 
the intensity distribution in the hexagonal reciprocal 
lattice are shown for various types and degrees of 
faulting. 

Fourier series expansion 
From equation (31) it is clear that  a Fourier 

expansion of the diffracted intensity about ~ = 0  is 

I(~,  fl)= .~ A~(fl) expiiV~ (38) 

with 
A~(#)= <exp i ¢ ~ ) .  

As Warren (1959) has emphasized, greater interest 
attaches to a Fourier series expansion about the peak 
position ~max. For extrinsic faulting this is only 
possible when f ~< 0.4, since at greater degrees of 
faulting two peaks occur. However, provided 
f < 0.4(fl < 0.25), a formal expansion about ~ma.~ 
is readily given. I t  is only necessary to write (38) as 

I ( $ - ~ a x ,  fl) = ~Y exp [i2V(~-~m~x)JA' .v(fl) (39) 

with 
A~,(fl)=exp [i2g~max] (exp i~b~) 

or, in real form, 
OO 

_r(~- ~ma~, /~) = 1+ 2; (a~ cos N(~-- ~ x )  
2V=l 

with + bN sin 2V ( ~ -  ~ma~)} 

a~.=exp [iN~max] (exp i~5~,> 
+ exp [ -  iN'max] <exp i~b~v)t 

b~ = i [exp [iN'max] (exp i~b~) 
--exp [--iNSma.~] (exp i¢~v)t]. (40) 

D i f f r a c t i o n  e f fec t s  at  l o w  e x t r i n s i c  
fau l t  d e n s i t i e s  

When f=O (i.e., the crystal is perfect) an infinitely 
sharp peak in I+(~, fl) occurs at ~=47~/3. To examine 
the behavior of I+ (~, fl) for small fl (small f) ,  equation 
(37) is therefore written in terms of the new angle 
6 = ~ - ( 4 z / 3 ) ;  an expansion is then obtained by 
assuming that  both fl and 5 are small. On substituting 

~= ~+(4~/3)  

in equation (37) we obtain 
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I + ( c 3 , 8 ) - 3 8 ( 1 - f l ) {  2-c°sS-V3sin(~ } (41) 
(1+8)  ~l(1- 8 + 82) + (82+ f l -  2) cos (~ + V(3)f l (1-  8) sin d + fl cos 2d-1 / (3)  fl sin 25 

which gives, to second order in ~ and 8, 

I+((~, 8) -~ 38(1--1/(3)~) + 0 ( 6  ~, (5~/~, . . . ) .  (42) 
389-- 1/(3)fl(~ + (52 

Equation (42) shows a peak at 

of height 

1/3 

4 
/+max -- 

and with half-width limits all, d2 given by 

l/3 3 

1/3 3 

so tha t  the width at  half-maximum intensity is, 
to this order of approximation, 3 8 . (Note tha t  to this 
approximation the broadening is symmetric). 

These parameters may  be compared directly with 
the corresponding parameters for intrinsic faulting 
when the density of faulting is specified by f, the 
fraction of planes faulted. This is done in Table 2. 

Table 2. Diffraction effects at low fault densities 
( f  ~ 1)for reflections ( H - K ) =  2 mod 3 

Intrinsic Extrinsic 
Parameter faulting* faulting 

Peak shift, dmax - ( va)/(2)f + ( l/3)/(4)f 
Peak intensity, /+max 4/(3f) 8/(3f) 
Half-width 3f (3/2)f 
* Some of these values have been given by Paterson (1952) 

and by Warren & Warekois (1955). 

S u m m a r y  

The diffraction effects produced by  extrinsic faulting 
are qualitatively different from the effects produced 

by  intrinsic faulting, and should be experimentally 
distinguishable. 

The calculation has been carried out under the 
assumption tha t  only extrinsic faults are present, 
and gives no direct information about the case in 
which a mixture of extrinsic and intrinsic faults occur 
in the same crystal. One remark can, however, be 
made. The line broadening due to intrinsic faulting 
is symmetric, while tha t  due to extrinsic faulting is 
not. Therefore, it  is clear tha t  the addition of extrinsic 
faults to a crystal originally containing only intrinsic 
faults will always destroy the symmetry  of the 
broadened lines. 
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